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Abstract | A simple receiver structure recently proposed by the authors [1]

for convolutional coded M{ary di�erential phase shift keying (MDPSK) trans-

mission over at Rayleigh fading channels without channel state information is

analyzed in detail. We present a thorough discussion of the iterative decoding

procedure, which is referred to as iterative decision{feedback di�erential demod-

ulation (iterative DF{DM) [1]. The convergence behavior of iterative DF{DM is

theoretically examined. The analysis supports the observation that the iterative

decoding scheme works well for target bit error rates which are usually of inter-

est. Furthermore, the associated cuto� rate for error{free decision feedback is

studied. Judging from this performance parameter remarkable gains in power ef-

�ciency compared to conventional di�erential demodulation are indicated, while

the computational complexity of the decoding remains low. The results from

information theory are in good agreement with the given simulation results.

Index terms: M{ary DPSK, Rayleigh fading channels, decision{feedback, nonco-

herent detection, bit{interleaved coded modulation, mobile communications
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1 Introduction

Digital receivers performing noncoherent detection are very attractive because of their

robustness against ambiguities and impairments of the phase of the received signal. In

particular, reliable estimation of the carrier phase and, in the case of transmission over

fading channels, the current channel state is often not practicable.

Usually, for noncoherent transmission, the underlying channel can be assumed to

be slowly time{variant or even time{invariant over at least two consecutive symbols.

Thus, there are dependences among the received symbols. As well known, this memory

should be utilized in the receiver processing to improve performance [2].

In state{of{the{art noncoherent receivers the decision variables are based on sev-

eral received symbols within an observation interval of N � 2 symbols. Thus, the

memory is partially taken into account. Generally, the larger N is chosen the more

complex the receiver becomes. For the additive white Gaussian noise (AWGN) chan-

nel with constant (unknown) phase it has been shown that for suÆciently large N the

performance of coherent transmission is approached [3, 4, 5, 6].

The classical solution to avoid the problem of phase ambiguity is M{ary di�eren-

tially encoded phase shift keying (MDPSK) modulation at the transmitter. MDPSK

and demodulation where decision variables on N �1 information symbols are provided

based on the independent evaluation of blocks of N � 2 consecutive received sym-

bols, which overlap by one symbol, are investigated in [3, 7, 8, 4]. In a more general

framework, noncoherently detectable convolutional codes, which include di�erential

encoding, are introduced in [5, 9]. Trellis{based noncoherent detection schemes are

developed in [10, 11, 12]. There, when channel coding is applied, decoding is done in

an augmented code trellis and interleaving is not employed. However, in a slow fading

environment, it is desirable to combine error correction coding with interleaving to

mitigate the e�ects of fading [13].

If di�erential encoding or some other modulation code, cf. e.g. [14, 15], succeeds

the channel encoder, iterative decoding schemes regarding the modulation as inner

component code of a serially concatenated code have been proposed in [14, 16, 17,

18, 19, 20]. Soft decisions of the outer (error correcting code) decoder are fed back

to the inner decoder to improve the delivered decision values. Here, the decoding

complexity of the inner code is determined by the considered channel memory length.

In particular, computational complexity increases exponentially with N and linearly

with the number of iterations.

In the case of di�erentially encoded transmission without error correction coding
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decision{feedback di�erential detection (DF{DD), i.e., the feedback of previously de-

cided transmitted symbols, has been proved to o�er good performance at a very low

computational complexity for both AWGN and fading channels [21, 22, 23, 24, 25].

A similar, but non{iterative reduced complexity decoding scheme using tentative

decisions in the Viterbi algorithm [26] yields good results in terms of bit error rate for

trellis coded noncoherent transmission over the AWGN channel, cf. e.g. [27, 12]. The

number of states of the augmented trellis, which represents both the code memory and

an implicit phase memory, is reduced by per{survivor processing [28]. Unfortunately,

this scheme does not include interleaving, which is in fact not necessary for the AWGN

channel, but very important for slow fading channels.

In this paper, we motivate and discuss extensively a simple{to{implement and low{

complexity noncoherent receiver for convolutional coded MDPSK recently proposed by

the authors in [1], which can also be employed in existing transmission systems without

any modi�cation of the transmitter. As a natural consequence of the considerations

above, the DF{DD technique is adopted to the case of error correction coding with

interleaving. In particular, bit{interleaved coded modulation (BICM) [29, 30] with

convolutional codes is applied to increase the code diversity. Since as in DF{DD feed-

back of hard decisions is considered, the decoding is performed through the standard

Viterbi algorithm. Thus, in contrast to the other iterative decoding schemes mentioned

above, the complex soft output decoding using for example the decoding algorithm of

[31], is not required. Moreover, the soft input for the Viterbi decoder can be com-

puted by evaluating very simple expressions and without a priori knowledge on the

fading statistics. Although the incorporation of hard decisions in the iterative de-

coding procedure is clearly suboptimum, performance gains of several dB compared

to conventional di�erential demodulation are achieved, while the increase in receiver

complexity is moderate. It should be mentioned that an iterative decoding technique

with hard{decision feedback has also been proposed in [32, 33]. There, regarding the

mapping as a modulation code enables an improvement of the performance of BICM

with iterative coherent demodulation.

This paper is organized as follows. In Section 2, the discrete{time system model is

introduced. The optimum metrics for the Viterbi decoder are derived in Section 3. In

Section 4, the low complex iterative decoding algorithm is described, and its conver-

gence is investigated by regarding the metric computation as an estimation problem.

A theoretical performance assessment based on the cuto� rate [34] is provided in Sec-

tion 5. The results of the cuto� rate analysis are in great accordance with the simulation
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results presented in Section 6. Finally, conclusions are drawn in Section 7.

2 System Model

The block diagram of the system model is depicted in Figure 1. Here, we apply the

discrete{time channel model. The channel and all signals are represented in the equiv-

alent low{pass domain, i.e., all quantities are complex{valued, cf. e.g. [35, Appendix].

A sequence of information bits enters the convolutional encoder. The encoder output

symbols are interleaved yielding the sequence of coded bits c[i] (i 2 ZZ: bit discrete{

time index). Then, `
4
= log2(M) interleaved coded bits are mapped to data{carrying

symbols a[k] (k 2 ZZ: symbol discrete{time index) from an M{ary PSK constellation

A 4
= fej2�m=M jm = 0; 1; : : : ;M � 1g. We use Gray labeling of PSK symbols a[k] with

respect to noncoherent distance [36], which equals the usual Gray labeling with respect

to the Euclidean distance [37]. Note that the appropriate labeling is essential for BICM

[30]. To enable noncoherent demodulation, a[k] is di�erentially encoded. That is, the

channel input symbols x[k] are obtained from

x[k] = a[k] � x[k � 1] : (1)

We assume suÆciently slow fading, i.e., the channel does not change signi�cantly

during one symbol interval, and transmitter and receiver �lters with square{root Nyquist

characteristics. Hence, the discrete{time Rayleigh fading channel is frequency{non-

selective (at) and the input{output{relation reads

y[k] = g[k] � x[k] + n[k] ; (2)

where the fading process g[�] and the noise process n[�] are mutually independent corre-
lated and uncorrelated zero{mean complex Gaussian random processes with variances

�2
g and �2

n, respectively. According to the widely used Clarke fading model [38] (also

known as Jakes model [39]) with maximum Doppler frequency fd, the autocorrelation

function of the fading process is given by

Rg[�]
4
= Egfg�[k]g[k + �]g = �2

g � J0(2�fdT�) ; (3)

where E�f�g denotes expectation with respect to �, J0(�) is the zeroth order Bessel

function of the �rst kind, and T is the symbol interval.

At the receiver, bit branch metrics �[i] are computed as described in Section 3. The

deinterleaved metrics are the soft input for the standard Viterbi decoder [26]. The hard
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decisions of the Viterbi decoder are interleaved and fed back to the metric calculation

(cf. Figure 1) which now makes use of the decisions ĉ[i]. This procedure is repeated in

a number of iterations.

3 Metric Calculation

In this section, the metric calculation based on decision{feedback symbols is presented.

For this, we assume a suÆcient interleaving depth such that the channel between

encoder output and decoder input is essentially memoryless. Hence, the standard

Viterbi algorithm with branch metrics �[i] can be applied for decoding.

As indicated in Section 1, for metric computation the dependences between consec-

utive channel output symbols should be incorporated as completely as possible. Thus,

we base the metric on the observation of N received symbols. In particular, we start

from the conditional probability density function (pdf) p(y[k]ja[k]) of y[k] 4= [y[k]; y[k�
1]; : : : ; y[k � N + 1]]T under the assumption a[k]

4
= [a[k]; a[k � 1]; : : : ; a[k � N + 2]]T ,

which is derived in e.g. [8].

Based on the pdf p(y[k]ja[k]) it is possible to compute the maximum{likelihood bit

metrics for the (N � 1) � ` bits which correspond via mapping bijectively to each vector

symbol a[k] as e.g. in [14]. Then, MN�1=` pdf calculations per (N�1)�` bit metrics are

necessary, i.e., the computational e�ort grows exponentially with the observation length

N . Here, we follow another approach, which clearly is suboptimum, but requires only

a very low complexity for metric computations. Instead of considering blocks a[k] as

trial symbols, we insert hard decision{feedback symbols â[k � �], � = 1; 2; : : : ; N � 2,

leaving only a[k] as trial symbol. This procedure is essentially the decision rule of

uncoded decision{feedback di�erential detection (DF{DD), e.g. [23, 24].

The �th bit, � = 0; 1; : : : ; `� 1, of the label of a[k] corresponds to the metric value

�[i], where i = k � ` + � holds. Subsequently, since the present symbol time index k

is of no importance, we replace the index i by � for clarity. Furthermore, the metric

notation �[�] is completed by the subscript b, b 2 f0; 1g, which gives the value of the

considered bit, and the superscript \sym" indicating that symbols â[k � �] are fed

back, i.e., �symb [�] is used. From the considerations above and assuming that the data

symbols a[k] are a priori equally likely, �symb [�] is given by

�symb [�] = log
X

a[k]2A�
b

p(y[k]ja[k]; â[k � 1]; : : : ; â[k �N + 2]) ; (4)

where A�
b is the subset of symbols a[k] 2 A whose label has the value b at position �.
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The metric computation is further simpli�ed if not only decision{feedback symbols

â[k � �], � = 1; 2; : : : ; N � 1, but also ` � 1 decision{feedback bits, which belong

to the label a[k], are inserted in (4). Then, denoting the �th estimated label bit of

a[k] by ĉ[�] and the mapping function by M, for calculation of �bitb [�], solely ~a[k] =

M(ĉ[0]; : : : ; ĉ[� � 1]; b; ĉ[� + 1]; : : : ; ĉ[` � 1]) is considered and the resulting metric is

given by:

�bitb [�] = log(p(y[k]j~a[k]; â[k � 1]; : : : ; â[k �N + 2])) : (5)

Instead of M , now only ` + 1 � M = 2` pdf's have to be determined since only ` + 1

di�erent ~a[k] are possible.

Noteworthy, the number of branch bit metrics �symb [�] and �bitb [�], respectively,

is independent of the observation length N , and identical to that for conventional

di�erential demodulation. Because of the analogy to DF{DD and since the metrics

constitute soft inputs for the decoder, both metric calculation strategies (4) and (5)

are referred to as decision{feedback di�erential demodulation (DF{DM) [1].

To save complexity it is reasonable to neglect all multiplicative terms in the pdf's

which do not depend on symbol a[k] 2 A�
b and ~a[k], respectively. Using the notation

t[�] = t0� with t0� de�ned in [24, Eq. (15)], �symb [�] and �bitb [�] can be simpli�ed to [24]

��symb [�] = log
X

a[k]2A�

b

exp

 
Re

(
a[k]y�[k] �

N�1X
�=1

t[�]y[k � �]
��1Y
n=1

â[k � n]

)!
; (6)

and [1]

��bitb [�] = Re

(
~a[k]y�[k] �

N�1X
�=1

t[�]y[k � �]
��1Y
n=1

â[k � n]

)
; (7)

respectively, where Ref�g denotes the real part of a complex number.

Since a positive multiplicative or additive constant is of no importance for the

decoding decisions in the Viterbi algorithm, it is possible to replace t[�] by p[�]
4
=

c � t[�], c 2 IR+, � = 1; 2; : : : ; N � 1, in (6) and (7). If c is chosen properly (cf.

[24]), p[�] are the coeÆcients of a linear (N � 1)st order minimum mean{squared error

(MMSE) FIR predictor [40] for the random process g[�] + n[�]x�[�]. In this case, these

coeÆcients p[�] can be adaptively determined in a simple manner by employing, e.g.,

the recursive least{squares (RLS) algorithm [41, 42]. Note that the strict equivalence

between maximum{likelihood based and prediction based approach holds for Rayleigh

fading channels only cf. e.g. [10, 43, 17, 42].
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4 Iterative Decoding Algorithm and Convergence

4.1 Iterative Decoding Algorithm

Now, the iterative decoding procedure as essentially proposed in [1] is formulated. For

DF{DD of uncoded MDPSK the feedback symbols â[k� �] stem from immediate deci-

sions on transmitted symbols. When error correction coding and bit{interleaving are

applied it is reasonable to obtain the decision{feedback symbols from the bit decisions

ĉ[i] of the Viterbi decoder via remodulation. Of course, for the �rst demodulation of

a received sequence (�rst decoding iteration), no previous decisions ĉ[i] are available.

Then, to keep the demodulation as simple as possible, we resort to conventional di�er-

ential demodulation based on two consecutive received symbols, i.e., N = 2. For the

further demodulations (decoding iterations) remodulated feedback symbols â[k��] are

used to calculate bit branch metrics based on an observation interval N > 2. If the

metrics are determined from (7) address bits ĉ[�] are additionally fed back.

It is worth mentioning that for BICM DF{DM can also lead to a performance

improvement if �bitb [�] with N = 2 is used in all but the �rst iterations. This is because

the dependences between the address bits of the considered di�erential symbol are

properly taken into account if the feedback bits are correct. Clearly, the improvement

due to iterative decoding depends on the particular mapping. For coherent 8PSK

and iterative decoding with hard decision{feedback the design of an optimal mapping

is investigated in [32, 33]. There, another labeling than Gray labeling was found to

perform best. For noncoherent iterative DF{DM with N > 2, our simulations have

shown that the loss after the �rst decoding iteration could not be compensated in

further iterations when using other labelings than Gray labeling. Furthermore, the

gain of iterative DF{DM with N = 2 and non{Gray labeling was always lower than

for N > 2 and Gray labeling. Therefore, we apply usual Gray labeling throughout this

paper.

4.2 Convergence Analysis

Since the algorithm has an iterative structure the question of convergence arises. Re-

garding (6) and (7), respectively, inserting the predictor coeÆcients p[�] for t[�], and

rewriting y[k] as

y[k] = x[k] � g[k] + n[k] = a[k] � (g[k] + n[k]x�[k]) � x[k � 1] ; (8)
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we can describe the e�ect of DF{DM as to deliver an estimate for �[k]
4
= g[k]+n[k]x�[k]

by evaluating the term [42]

�̂[k]
4
= x�[k � 1] �

N�1X
�=1

p[�]y[k � �]
��1Y
n=1

â[k � n] : (9)

From a closer examination of (9) we note that for â[k��] = a[k��], � = 1; 2; : : : ; N�2,
�̂[k] is the MMSE estimate for �[k] [10, 43, 17, 24, 42].

Adopting this point of view, an appropriate criterion for convergence is the variance

of the estimation error

�2
e
4
= E�;�̂fj�[k]� �̂[k]j2g ; (10)

where erroneous feedback symbols â[k � �] 6= a[k � �] occur in case of non{zero bit

error rate (BER) in the previous iteration. If �2
e decreases when the observation interval

is increased to N > 2 using decision{feedback symbols, the corresponding BER will

decrease as well. Thus, the algorithm converges. However, if due to erroneous decision{

feedback symbols �2
e increases for larger N , the corresponding BER will also increase.

Then, the iterative decoding does not converge.

Therefore, we evaluate the expression for �2
e in dependence of the BER in the

previous iteration. De�nition (10) may be rewritten to

�2
e = E�fj�[k]j2g � 2 � RefE�;�̂f�[k]�̂�[k]gg+ E�̂fj�̂[k]j2g

= �2
g + �2

n � 2 � RefE�;�̂f�[k]�̂�[k]gg+ E�̂fj�̂[k]j2g : (11)

For the further analysis, we assume that the decision{feedback binary symbols are

mutually statistically independent and independent of the corresponding channel gain.

This assumption might be violated in a practical system, because in case of low fading

gain unreliable soft decoder inputs are likely to cause a detour in the Viterbi decoding.

However, this simpli�cation is necessary for mathematical tractability and the obtained

results closely match with our simulations. After some straightforward manipulations

we obtain

E�;�̂f�[k]�̂�[k]g =
N�1X
�=1

p�[�]Rg[�]
��1Y
n=1

Ea;âfa[k � n]â�[k � n]g (12)

E�̂fj�̂[k]j2g =
N�1X
�=1

N�1X
�=1

p[�]p�[�](Rg[�� �] + �2
nÆ[�� �])

�
maxf�;�g�1Y
n=minf�;�g

Ea;âfa[k � n]â�[k � n]g ; (13)
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where Æ[�] denotes the Kronecker delta, i.e., Æ[0] = 1, Æ[�] = 0 for � 6= 0. The evaluation

of Ea;âfa[k � n]â�[k � n]g as a function of BER requires the choice of the signal con-

stellation and the labeling. As mentioned above, we apply Gray labeling. If, as in the

following, 4PSK and 8PSK constellations are considered, and due to bit{interleaving

statistically independent bit errors are assumed, the expected value reads

�
4
= Ea;âfa[k � n]â�[k � n]g

=

8<
: 1� 2 � BER for 4PSK1

1� (3�p2=2) � BER + (2�p2) � BER2 for 8PSK.
(14)

Finally, using (12){(14) in (11) yields the error variance as a function of BER in

the previous iteration:

�2
e = �2

g + �2
n � 2 � Re

(
N�1X
�=1

p�[�]Rg[�] � ���1

)

+
N�1X
�=1

N�1X
�=1

p[�]p�[�](Rg[�� �] + �2
nÆ[�� �]) � �j���j : (15)

As an example, we assume 4DPSK transmission over a Rayleigh fading channel

with fdT = 0:01, coding with the widely applied convolutional code of rate 1/2, memory

6, and generator polynomials (133; 171)8, and Viterbi decoding.

Figure 2 shows �2
e as a function of �Es=N0 ( �Es: average energy per received signal,

N0: one{sided noise power spectral density) for N = 2 in the �rst iteration (without

feedback), and for N = 3; 5; 10 in the second iteration applying both DF{DM with

BER 6= 0 (solid lines)2 and genie{aided DF{DM, i.e., BER = 0 (dashed lines) for

generating the feedback symbols. Clearly, the curves of genie{aided DF{DM constitute

the performance limit of DF{DM. In these cases, increasing N results in a reduced

variance of the estimation error for all SNR's. For comparison, also the curve for

N ! 1 obtained from [24, Eq. (51)] is included. If erroneous feedback symbols

due to BER 6= 0 are taken into account the curves for the �rst (N = 2) and second

iteration (N > 2) intersect. As expected, for relatively low SNR, where BER is high (cf.

Figure 6), the error variance increases in the second iteration, whereas �2
e decreases for

higher SNR. Since an erroneous feedback symbol is more often used in the demodulation

with larger N , the cross{over points of the curves depend on N . Overall, convergence

of DF{DM is reached at relatively low values of �Es=N0. Hence, we conclude that

the iterative decoding algorithm with DF{DM converges for usually desired BER's.

1Note that for 2PSK the same result as for 4PSK is obtained.
2Here, BER is taken from the simulated curve for N = 2 in Figure 6.
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Noteworthy, for high SNR, the ultimate performance gain, which is illustrated by

the genie{aided DF{DM curves, is already almost achieved after two iterations (one

feedback of decision) for 10 log10( �Es=N0) > 8 dB.

A comparison of this convergence prediction with the simulation results presented

in Figure 6 will be made in Section 6.

5 Cuto� Rate for Genie{Aided DF{DM

A good trade{o� between powerful error correcting coding and fair complexity of de-

coding is o�ered by application of convolutional codes and decoding with the Viterbi

algorithm. For this coding scheme, the cuto� rate R0 of the associated memoryless

channel is a common measure of performance [34]. Convolutional codes with soft input

Viterbi decoding usually achieve a low BER when operating in the vicinity of the cuto�

rate limit.

Hence, R0 for genie{aided DF{DM, i.e., all decision{feedback symbols are assumed

to be correct, is used to judge the achievable performance of DF{DM for di�erent

window lengths N . Following the derivations in [30], we de�ne the so{called average

Bhattacharyya factor

B
4
=

1

`

`�1X
�=0

Eb;y

8><
>:
vuuutexp

�
���b [�]

�
exp

�
��b [�]

�
9>=
>; ; � 2 fsym; bitg ; (16)

where �symb [�] and �bitb [�] are taken from (4) and (5), respectively, and �b denotes the

complement of b. The cuto� rate of BICM in bits per channel use is given by

R0 = ` � (1� log2(B + 1)) : (17)

Subsequently, this expression is numerically evaluated for DF{DM utilizing also

decision{feedback bits labeling a[k], i.e., �bitb [�], which o�ers the largest computational

savings. Since genie{aided DF{DM is assumed, there is no dependence on the number

of iterations.

First, 4DPSK is considered. In Figure 3, the inuence of the observation lengthN is

examined for Jakes fading model with fdT = 0:01. The curve for N = 2 represents the

cuto� rate corresponding to conventional di�erential demodulation without decision{

feedback. Noteworthy, in case of N = 2 DF{DM does not yield any performance

improvement as for Gray labeling the di�erence metrics (�sym0 [�]��sym1 [�]) and (�bit0 [�]�
�bit1 [�]) are equivalent for 4DPSK (cf. also (6), (7)), i.e., the two bits per symbol
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are transmitted independently of each other. As reference curve and upper bound,

the cuto� rate of coherent 4PSK with perfect channel state information (CSI) at the

receiver is also shown. As can be seen, there is a relatively large potential gain in power

eÆciency by expanding the demodulation window from N = 2 to N = 3 for DF{DM.

A further increase of N leads to a higher R0 for given �Es=N0, but the improvements

are comparatively small. This observation will be con�rmed by our simulation results

in Section 6.

The interaction between the fading rate fdT and the achievable performance of

4DPSK with DF{DM is illustrated in Figure 4, where the respective cuto� rates for

fdT = 0:001 and fdT = 0:05 are plotted. For slow fading (fdT = 0:001), there is a

steady improvement in terms of R0 by increasing N . On the other hand, for fast fading,

(fdT = 0:05) DF{DM is not expected to provide gains for all rates. In particular,

for R0 � 1 bit/(channel use) the required SNR is about the same for conventional

demodulation with N = 2 and DF{DM with N = 3; 4; 5. This has been con�rmed by

simulations and it is also in accordance with simulation results presented in [17], where

only small gains in power eÆciency are achieved by iterative soft{feedback decoding

with N = 4 for the same transmission rate and fdT = 0:05 3. However, if high rate

codes are employed, DF{DM is also advantageous in fast fading environments, since

the attening of the curve for N = 2 and fdT = 0:05 at R0 � 1:65 bit/(channel use)

moves to values of about 2 bit/(channel use). This coincides with the results in [24]

for uncoded 4DPSK transmission, where for di�erential detection with N = 2 an error

oor is observed for fast fading, which is practically removed by DF{DD with N = 4.

For comparison, the cuto� rate for coherent 4PSK, which is independent of fdT , of

course, is also included in Figure 4.

Next, the cuto� rate for 8DPSK is considered. Figure 5 shows the curves for

conventional di�erential demodulation with N = 2 and DF{DM with N = 3; 5; 10 for

fast fading with fdT = 0:05 and for slow fading with fdT = 0:001. As there is only

a minor gain for DF{DM with N = 2 (see Section 6), the corresponding curves are

omitted for clarity.

As for 4DPSK, in a slow fading environment relatively large performance gains

are already achievable by DF{DM with N = 3. By increasing N , the cuto� rate for

coherent transmission with perfect CSI is approached. For fast fading and DF{DM

with N = 3, the potential gains depend strongly on the desired transmission rate. The

3Note that in [17] the cuto� rate of the applied iterative soft{feedback decoding scheme is not

examined. Thus, there a satisfactory explanation for the absence of a gain for N = 4 and fdT = 0:05

could not be given.
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attening of R0 for conventional di�erential demodulation with N = 2 is signi�cantly

mitigated. However, due to the fast fading, a considerable gap remains between the

curves for coherent transmission with perfect CSI and noncoherent transmission with-

out CSI even for DF{DM with N = 10. These analytic results are in great accordance

with the simulation results presented in Section 6 and in [1, Fig. 2].

Finally, we would like to mention that the cuto� rates for genie{aided DF{DM

with branch metrics �symb [�] are only marginally inferior to the cuto� rates for metrics

�bitb [�], which are evaluated in Figures 3{5.

6 Simulation Results

To further assess the performance of iterative DF{DM, the system in Figure 1 with at

Rayleigh fading has been simulated. In this section, the measured BER's are presented

as functions of �Eb=N0 ( �Eb: average energy per information bit). As for calculation of the

cuto� rate, we concentrate on 4DPSK and 8DPSK transmission. For channel coding,

BICM with Gray labeling and convolutional codes with standard Viterbi decoding are

applied. The bit{interleavers are randomly generated for each transmitted BICM block

to obtain results which are independent of a particular interleaver.

For 4DPSK, the target rate of 1 bit/(channel use) is regarded as a relevant example,

which is generated through the standard rate 1/2 convolutional code with 64 states (see

Section 4.2). The at fading channel is speci�ed by fdT = 0:01. Bit{interleaving over

4000 bits, which correspond to 2000 channel symbols, is applied to provide transmission

diversity.

In Figure 6, the convergence of the iterative decoding algorithm is illustrated. The

curves correspond to the bit error rates for conventional di�erential demodulation with

N = 2 and for iterative DF{DM with N = 3 and N = 5. As performance limits, the

measured BER's for genie{aided DF{DM with N = 3 and N = 5 are plotted over

the SNR. The curves show that iterative DF{DM provides considerable gains in power

eÆciency for a wide range of target BER's. In accordance with the convergence analysis

in Section 4.2 the curves for iterative DF{DM with N = 3 and N = 5 intersect. Due

to the (nonlinear) Viterbi decoding, the curves for �2
e in Figure 2 do not translate one{

to{one into the curves for BER in Figure 6, i.e., the intersection points are not located

exactly at the same values of SNR. Comparing the results for genie{aided DF{DM and

iterative DF{DM for N = 3 shows that almost the whole achievable performance gain

is obtained after the second iteration, i.e., decision{feedback is performed only once.
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For iterative DF{DM with N = 5 and regarding target bit error rates of about 10�4

and 10�5, three decoding iterations are suÆcient.

The performance of conventional di�erential demodulation, iterative DF{DM with

several observation lengths N , and coherent 4PSK with perfect CSI at the receiver are

compared in Figure 7. Here, DF{DM with four iterations is considered. Note that

for N = 3; 5 almost identical BER's are obtained with fewer iterations (Figure 6).

Again, the curves for genie{aided DF{DM give lower bounds on BER of iterative DF{

DM. The large gap in power eÆciency between coherent and conventional di�erential

demodulation is signi�cantly reduced by the simple iterative DF{DM scheme. About

1.8 dB can be gained for BER � 10�4. The simulation results coincide with the cuto�

rate analysis (see Figure 3), where very similar performance gains are predicted. In

particular, iterative DF{DM with N = 10 is only marginally superior to iterative

DF{DM with N = 5 for fdT = 0:01 and code rate 1/2.

It can be seen from Figure 7 that the BER curves for genie{aided DF{DM and

coherent detection have di�erent slopes. This is in accordance with [24] where a similar

behavior can be observed for uncoded transmission and DF{DD (cf. e.g. [24, Fig. 8]

for N = 3; 4 and [24, Fig. 6] for N !1).

For a comparison with iterative decoding schemes using soft decision{feedback

simulation results with almost identical parameters (only the bit interleaver size is dif-

ferent) presented in [17, Fig. 6] can be considered. There, for 4DPSK and Rayleigh

fading with fdT = 0:01, a gain of about 2.8 dB over conventional di�erential demodula-

tion is achieved after three iterations at BER = 10�4, which is a further improvement of

1 dB compared to iterative DF{DM4. However, whereas for DF{DM 64 state standard

Viterbi decoding and the evaluation of elementary metric expressions (cf. (7)) suÆces,

the scheme in [17] requires two 64 state soft{output algorithms. Furthermore, the num-

ber of states of the employed soft{output demodulator increases polynomially with the

number of signal pointsM and exponentially with the length of the observation window

N . Thus, the prize to be paid for further improvement in power eÆciency is a much

higher complexity, whereas for iterative DF{DM complexity is almost independent of

M and N .

Now, more bandwidth eÆcient 8DPSK transmission with 2 bit/(channel use) is

considered. The punctured rate 2/3 convolutional code with 64 states (generator poly-

nomials (135; 163)8) is taken from [44]. We assume fading with fdT = 0:001 and ap-

4When comparing absolute quantities of SNR in Figure 7 and [17, Fig. 6] it should be noted that

the larger interleaver size in [17] leads to a better performance in [17, Fig. 6] in general.
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propriate bit{interleaving of 60000 bits, which corresponds to 20000 channel symbols5.

Both bit branch metrics (6) and (7) are applied for comparison.

The simulation results are plotted in Figure 8. Note that in case of bit metric (6)

using symbol feedback only, DF{DMwith N = 2 is identical to conventional di�erential

demodulation with N = 2, i.e., no feedback symbols are incorporated in the metric

computation. Accordingly, the curves for N = 2 reect the improvement exclusively

due to bit feedback. Clearly, also for N = 3; 5 DF{DM with additional bit feedback is

superior to DF{DM with symbol feedback only. However, consistent with the notion

of Gray labeling the gains due to bit feedback are rather small. Hence, the main

advantage of combined symbol and bit feedback is the simplicity of the corresponding

bit branch metric (7). As the fading is relatively slow, the power eÆciency of coherent

8PSK can be well approached by DF{DM as was expected from the cuto� rate analysis

(cf. Figure 5). 8DPSK and DF{DM with N = 5 requires an SNR for BER � 10�4

which is only about 1 dB higher than the SNR for coherent 8PSK with perfect CSI.

The gain of using DF{DM with N = 5 compared to usual di�erential demodulation

amounts to about 2.2 dB. Noteworthy, also for 8DPSK the iterative decoding algorithm

converges for the target BER's which are usually of interest.

7 Conclusions

A simple iterative decoding scheme for bit{interleaved convolutional coded MDPSK

transmission over at Rayleigh fading channels without channel state information at the

receiver recently proposed in [1] is discussed in detail. Due to the use of hard{decision

feedback this decoding procedure has the distinct advantage of requiring only a very

moderate increase in computational complexity compared to conventional di�erential

demodulation with observation length N = 2.

Two di�erent expressions for bit branch metrics are derived. Based on a convenient

metric representation, the demodulation with observation length N > 2 is regarded

as an estimation problem, which enables the investigation of the convergence of the

iterative decoding algorithm. It turns out that the algorithm converges for usually

desired BER's, which is exemplarily shown for 4DPSK transmission.

By a cuto� rate analysis the potential gains in power eÆciency are quanti�ed. It

is shown that the achievable performance gains strongly depend on the transmission

rate and the fading rate.

5For the fast fading case of fdT = 0:05 we refer to [1, Fig. 2]
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Both convergence and cuto� rate analysis well support and motivate the obtained

simulation results, cf. also [1]. Compared to conventional di�erential demodulation

remarkable performance improvements are achieved. Although larger gains can be ob-

tained by iterative soft{feedback decoding, the considerably higher complexity of such

schemes might be prohibitive. Thus, low{complexity iterative DF{DM is a promising

solution for a number of applications, e.g. mobile communications, where computa-

tional complexity is limited.
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1. Discrete{time system model.

2. Variance of the estimation error for �rst iteration (N=2) and second iteration

with DF{DM (N=3,5,10). Solid lines: �rst iteration and DF{DM. Dashed lines:

genie{aided DF{DM. 4DPSK and Rayleigh fading with fdT = 0:01 is used.

3. Cuto� rate for 4DPSK and Rayleigh fading with fdT = 0:01. Dashed line:

conventional di�erential demodulation with N = 2. Solid lines: genie{aided

DF{DM with N = 3; 4; 5; 10. Dash{dotted line: 4PSK with perfect CSI.

4. Cuto� rate for 4DPSK and Rayleigh fading. Conventional di�erential demod-

ulation with N = 2 and genie{aided DF{DM with N = 3; 4; 5. Dashed lines:

fdT = 0:001. Solid lines: fdT = 0:05. Dash{dotted line: 4PSK with perfect CSI.

5. Cuto� rate for 8DPSK and Rayleigh fading. Conventional di�erential demod-

ulation with N = 2 and genie{aided DF{DM with N = 3; 4; 5. Dashed lines:

fdT = 0:001. Solid lines: fdT = 0:05. Dash{dotted line: 8PSK with perfect CSI.

6. BER versus 10 log10( �Eb=N0) for 4DPSK and Rayleigh fading with fdT = 0:01.

64 states convolutional code. Solid lines: conventional di�erential demodulation

with N = 2 and DF{DM with N = 3; 5. First four iterations. Dashed lines:

genie{aided DF{DM.

7. BER versus 10 log10( �Eb=N0) for 4DPSK and Rayleigh fading with fdT = 0:01. 64

states convolutional code. DF{DM with four iterations. Solid lines: conventional

di�erential demodulation with N = 2 and DF{DM with N = 3; 5; 10. Dashed

lines: genie{aided DF{DM . Dash{dotted line: 4PSK with perfect CSI.

8. BER versus 10 log10( �Eb=N0) for 8DPSK and Rayleigh fading with fdT = 0:001. 64

states convolutional code. DF{DM with four iterations. Solid lines: conventional

di�erential demodulation with N = 2 and DF{DM with N = 2; 3; 5. Dashed

lines: genie{aided DF{DM. Dash{dotted line: 8PSK with perfect CSI.



Lampe, Schober 20

Figure 1: Discrete{time system model.
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Figure 2: Variance of the estimation error for �rst iteration (N=2) and second itera-

tion with DF{DM (N=3,5,10). Solid lines: �rst iteration and DF{DM. Dashed lines:

genie{aided DF{DM. 4DPSK and Rayleigh fading with fdT = 0:01 is used.
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Figure 3: Cuto� rate for 4DPSK and Rayleigh fading with fdT = 0:01. Dashed line:

conventional di�erential demodulation with N = 2. Solid lines: genie{aided DF{DM

with N = 3; 4; 5; 10. Dash{dotted line: 4PSK with perfect CSI.
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Figure 4: Cuto� rate for 4DPSK and Rayleigh fading. Conventional di�erential

demodulation with N = 2 and genie{aided DF{DM with N = 3; 4; 5. Dashed lines:

fdT = 0:001. Solid lines: fdT = 0:05. Dash{dotted line: 4PSK with perfect CSI.
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Figure 5: Cuto� rate for 8DPSK and Rayleigh fading. Conventional di�erential

demodulation with N = 2 and genie{aided DF{DM with N = 3; 4; 5. Dashed lines:

fdT = 0:001. Solid lines: fdT = 0:05. Dash{dotted line: 8PSK with perfect CSI.
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Figure 6: BER versus 10 log10( �Eb=N0) for 4DPSK and Rayleigh fading with fdT =

0:01. 64 states convolutional code. Solid lines: conventional di�erential demodulation

with N = 2 and DF{DM with N = 3; 5. First four iterations. Dashed lines: genie{

aided DF{DM.
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Figure 7: BER versus 10 log10( �Eb=N0) for 4DPSK and Rayleigh fading with fdT =

0:01. 64 states convolutional code. DF{DM with four iterations. Solid lines: conven-

tional di�erential demodulation with N = 2 and DF{DM with N = 3; 5; 10. Dashed

lines: genie{aided DF{DM . Dash{dotted line: 4PSK with perfect CSI.
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Figure 8: BER versus 10 log10( �Eb=N0) for 8DPSK and Rayleigh fading with fdT =

0:001. 64 states convolutional code. DF{DM with four iterations. Solid lines: conven-

tional di�erential demodulation with N = 2 and DF{DM with N = 2; 3; 5. Dashed

lines: genie{aided DF{DM. Dash{dotted line: 8PSK with perfect CSI.


